加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
例1 如图所示,MN、PQ为足够长的平行金属导轨,间距L=0.50 m,导轨平面与水平面间夹角θ=37°,N、Q间连接一个电阻R=5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0 T.将一根质量为m=0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0 m.已知g=10 m/s2,sin 37°=0.60,cos 37°=0.80.求:
(1)金属棒沿导轨开始下滑时的加速度大小;
(2)金属棒到达cd处的速度大小;
(3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量.
突破训练1 如图所示,相距为L的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m、电阻为R的两根相同的导体棒,导体棒MN上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B.将两根导体棒同时释放后,观察到导体棒MN下滑而EF保持静止,当MN下滑速度最大时,EF与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是 ( )
A.导体棒MN的最大速度为B2L2
B.导体棒EF与轨道之间的最大静摩擦力为mgsin θ
C.导体棒MN受到的最大安培力为mgsin θ
D.导体棒MN所受重力的最大功率为B2L2
例2 如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少?
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大?
(3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少?
突破训练2 如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B.有一质量为m、长为l的导体棒从ab位置获得平行于斜面、大小为v的初速度向上运动,最远到达a′b′位置,滑行的距离为s,导体棒的电阻也为R, 与导轨之间的动摩擦因数为μ.则 ( )
A.上滑过程中导体棒受到的最大安培力为R
B.上滑过程中电流做功发出的热量为2mv2-mgs(sin θ+μcos θ)
C.上滑过程中导体棒克服安培力做的功为2mv2
D.上滑过程中导体棒损失的机械能为2mv2-mgssin θ
例3 如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状态时速率为v,此时整个电路消耗的电功率为重力功率的4.已知重力加速度为g,导轨电阻不计,求:
(1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab中的电流强度I;
(2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少?
(3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导体棒ab横截面的电荷量为q,求这段距离是多少?
独立作业
1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一定值电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则 ( )
A.ef将减速向右运动,但不是匀减速
B.ef将匀减速向右运动,最后停止
C.ef将匀速向右运动
D.ef将做往返运动
2.一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图所示,则( )
A.若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动
B.若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动
C.若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动
D.若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动
3.如图甲所示,电阻不计且间距L=1 m的光滑平行金属导轨竖直放置,上端接一阻值R
=2 Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m=0.1 kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平.已知杆ab进入磁场时的速度v0=1 m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则 ( )
A.匀强磁场的磁感应强度为1 T
B.杆ab下落0.3 m时金属杆的速度为1 m/s
C.杆ab下落0.3 m的过程中R上产生的热量为0.2 J
D.杆ab下落0.3 m的过程中通过R的电荷量为0.25 C
4.如图所示,足够长的粗糙绝缘斜面与水平面成θ=37°角,在斜面上虚线aa′和bb′与斜面底边平行,在aa′、b′b围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g、总电阻为R=1 Ω、边长为d=0.1 m的正方形金属线圈MNPQ,让PQ边与斜面底边平行,从斜面上端静止释放,线圈刚好匀速穿过磁场.已知线圈与斜面间的动摩擦因数为μ=0.5,(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
(1)线圈进入磁场区域时,受到的安培力大小;
(2)线圈释放时,PQ边到bb′的距离;
(3)整个线圈穿过磁场的过程中,线圈上产生的焦耳热.
5.如图所示,电阻可忽略的光滑平行金属导轨长s=1.15 m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值为R=1.5 Ω的电阻,磁感应强度为B=0.8 T的匀强磁场垂直轨道平面向上.阻值r=0.5 Ω、质量m=0.2 kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Qr=0.1 J.(取g=10 m/s2)求:
(1)金属棒在此过程中克服安培力做的功W安;
(2)金属棒下滑速度v=2 m/s时的加速度a;
(3)为求金属棒下滑的最大速度vm,有同学解答如下:由动能定理,WG-W安=2mvm,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.