加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
加入时间:2022-05-25
学习目标
1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.
一、函数极值的概念
问题1 如图是某处群山的截面图,你能指出山峰、山谷吗?
问题2 你能描述一下在各个山峰、山谷附近的特点吗?
知识梳理
极值点与极值的概念
1.极小值点与极小值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a的左侧______,右侧________,则把a叫做函数y=f(x)的____________,f(a)叫做函数y=f(x)的________.
2.极大值点与极大值
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧________,右侧________,则把b叫做函数y=f(x)的____________,f(b)叫做函数y=f(x)的__________.
3.极大值点、极小值点统称为________,极大值和极小值统称为________.
例1 函数y=f(x)的导函数的图象如图所示,给出下列判断:
①函数y=f(x)在区间(3,5)内单调递增;②函数y=f(x)在区间内单调递减;
③函数y=f(x)在区间(-2,2)内单调递增;④当x=-时,函数y=f(x)有极大值;
⑤当x=2时,函数y=f(x)有极大值.
则上述判断中正确的序号是________.
二、求函数的极值
例2 求下列函数的极值:
(1)f(x)=x3-3x2-9x+5;
(2)f(x)=x-alnx(a∈R).
反思感悟 函数极值和极值点的求解步骤
跟踪训练2 求下列函数的极值:
(1)f(x)=x3-x;
(2)f(x)=x2e-x.
三、由极值求参数的值或范围
例3 (1)若函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a=________,b=________.
(2)已知函数f(x)=x3-
(m+3)x2+(m+6)x(x∈R,m为常数),在区间(1,+∞)内有两个极值点,求实数m的取值范围.
跟踪训练3 若函数f(x)=x3-4x+4的图象与直线y=a恰有三个不同的交点,则实数a的取值范围是________.
1.函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论错误的是( )
A.在(1,2)上函数f(x)单调递增
B.在(3,4)上函数f(x)单调递减
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点
2.(多选)已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个单调递增区间是( )
A.(-∞,2) B.(3,+∞) C.(2,+∞) D.(-∞,3)
3.设函数f(x)=xex,则( )
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点
D.x=-1为f(x)的极小值点
4.已知曲线f(x)=x3+ax2+bx+1在点(1,f(1))处的切线斜率为3,且x=是y=f(x)的极值点,则a=________,b=________.