- 1 /		
	-TU><-J	

专题一	力与运动				
专题二	能量与动量				
专题三	电场与磁场				
专题四	电路与电磁感应				
专题五	光学 电磁波 近代物理				
专题六	热学				
专题七	实验				

物理二轮时间安排

周一	周二	周三	周四	周五	周六	周日
					3.23	24
25	26	27	28	29	30	31
4.1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	5.1	2	3	4	5

专题一、力与运动

第1讲 力与物体的平衡

第2讲 牛顿运动定律与直线运动

第3讲 抛体运动

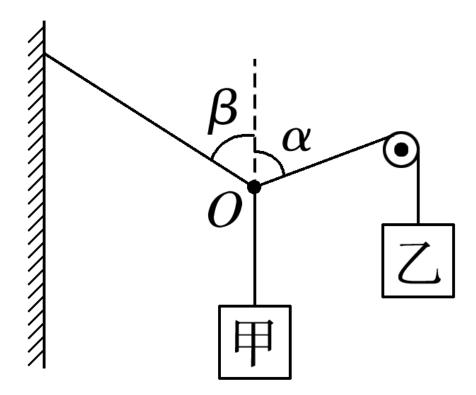
第4讲 圆周运动 天体的运动

第5讲 机械振动和机械波

第1讲 力与物体的平衡

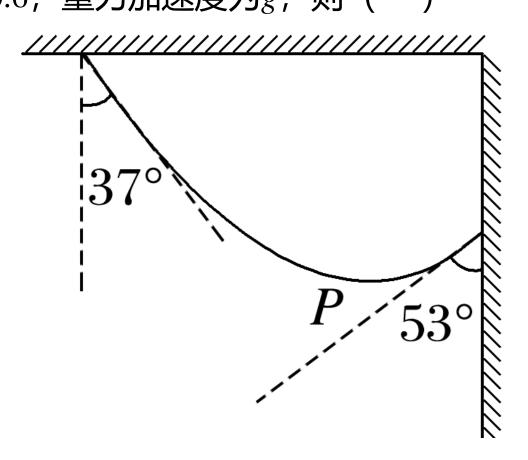
考点一、静态平衡问题

考点二、动态平衡问题

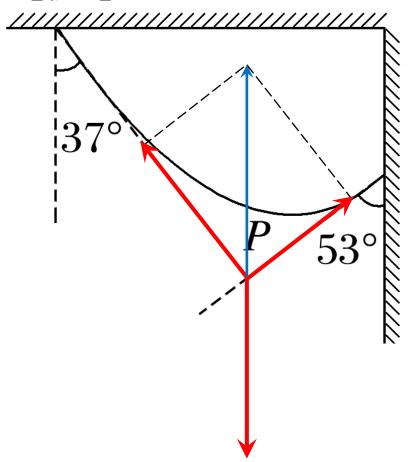

【例1】如图,悬挂甲物体的细线拴牢在一不可伸长的轻质细绳上O点处;绳的一端固定在墙上,另一端通过光滑定滑轮与物体乙相连.甲、乙两物体质量相等.系统平衡时,O点两侧绳与竖直方向的夹角分别为 α 和 β .若 α = 70°,则 β 等于()

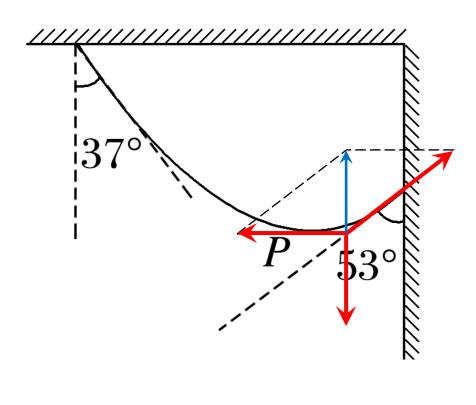
A.45°

B.55°


C.60°

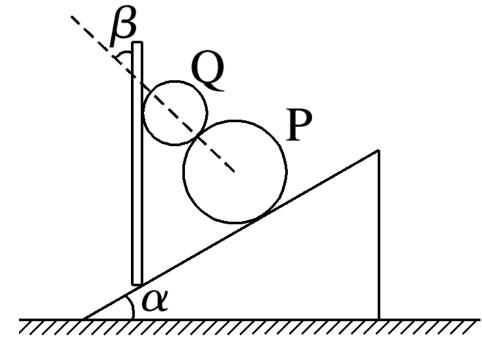
D.70°



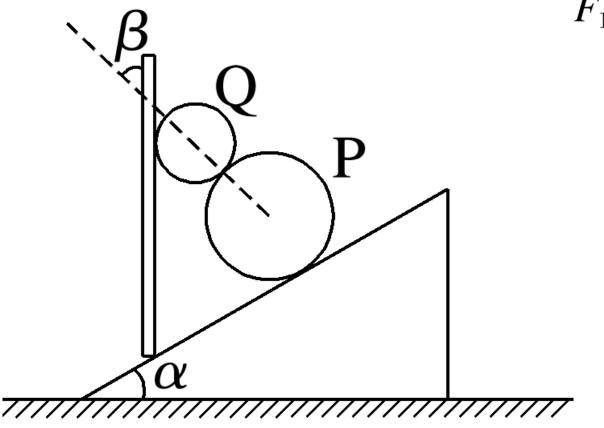

【例2】质量为m粗细均匀的麻绳如图所示悬挂,悬点处切线与竖直方向夹角分别为37°和53°,P点为最低点, $\sin 37$ ° = 0.6,重力加速度为g,则()

- A.左侧悬点对麻绳拉力为0.6mg
- B.右侧悬点对麻绳拉力为0.8mg
- C.最低点P处张力为0.3mg
- D.P点右侧麻绳质量为0.36m

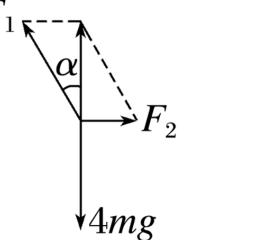
【例2】

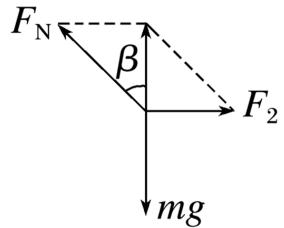

【例3】如图所示,倾角为 α 的斜面固定在水平面上,在斜面和固定的竖直挡板之间有两个匀质球P、Q,P球质量是Q球质量的三倍,各接触面均光滑,系统处于静止状态,P、Q两球的球心连线与竖直方向的夹角为 β ,下列说法正确的是()

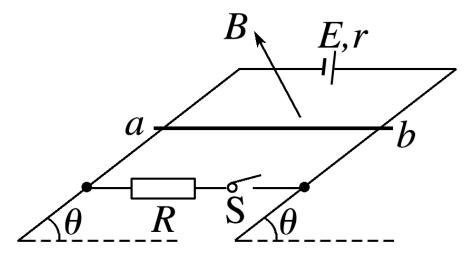
A.4 $\tan \alpha = \tan \beta$

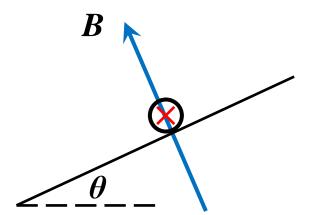

B.3 $\tan \alpha = \tan \beta$

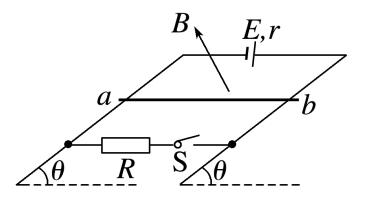
C.2 $\tan \alpha = \tan \beta$


D.tan $\alpha = \tan \beta$

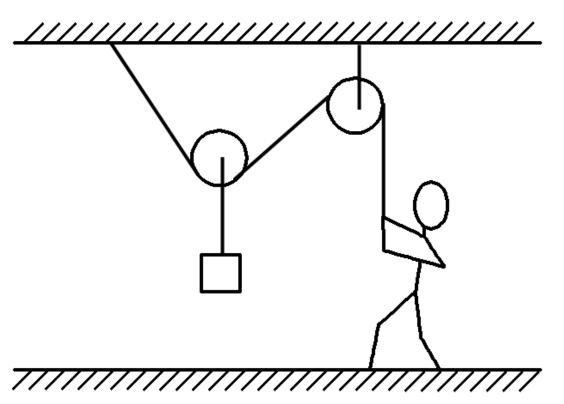

【例3】


整体

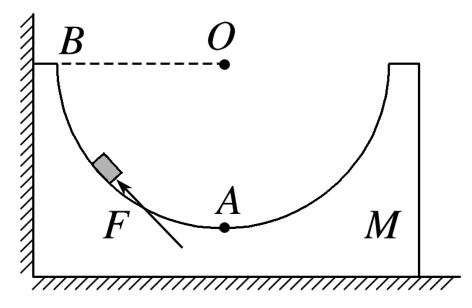

隔离

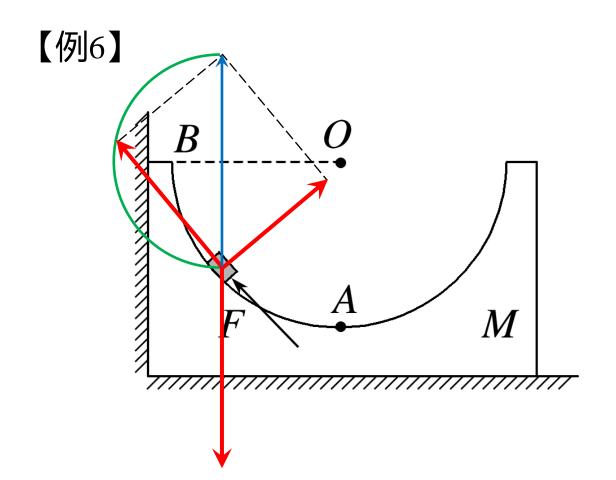


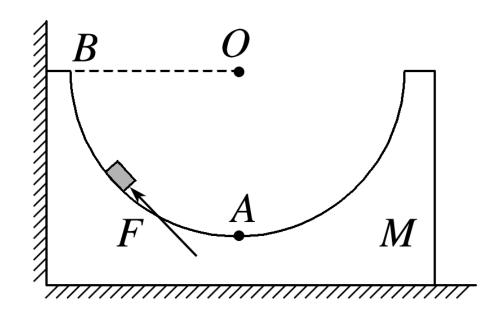
【例4】如图所示,与水平面夹角均为 θ =37°的两金属导轨平行放置,间距为1 m,金属导轨的一端接有电动势E=3 V、内阻r=1 Ω 的直流电源,另一端接有定值电阻R=4 Ω . 将质量为0.025 kg 的导体棒ab垂直放在金属导轨上,整个装置处在垂直导轨平面向上的匀强磁场中。当开关S断开时,导体棒刚好不上滑,当开关S闭合时,导体棒刚好不下滑。已知导体棒接入电路的电阻 R_0 =4 Ω , sin 37°=0.6, cos 37°=0.8,金属导轨电阻不计,最大静摩擦力等于滑动摩擦力,重力加速度取g=10 m/s². 则导体棒与导轨间的动摩擦因数为(


(何4) B O

【例5】如图所示,工人利用滑轮组将重物缓慢提起,下列说法正确的是()

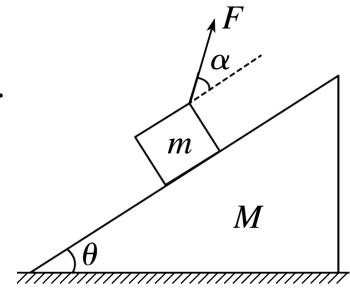

- A.工人受到的重力和支持力是一对平衡力
- B.工人对绳的拉力和绳对工人的拉力是一对作用力与反作用力
- D.重物缓慢拉起过程,绳子拉力不变

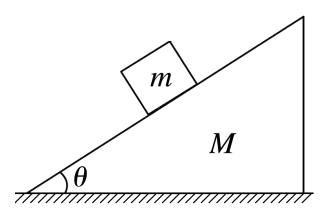


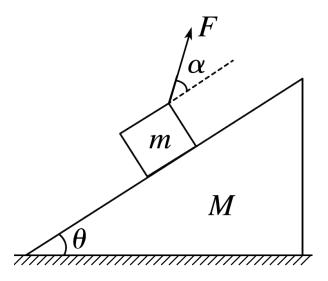

【例6】质量为M的凹槽静止在水平地面上,内壁为半圆柱面,截面如图所示, A为半圆的最低点,B为半圆水平直径的端点.凹槽恰好与竖直墙面接触,内 有一质量为m的小滑块,用推力F推动小滑块由A点向B点缓慢移动,力F的方 向始终沿圆弧的切线方向,在此过程中所有摩擦均可忽略,下列说法正确的

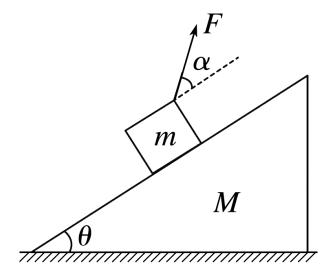
是()

- A.推力F先增大后减小
- B.凹槽对滑块的支持力先减小后增大
- C.墙面对凹槽的压力先增大后减小
- D.水平地面对凹槽的支持力先减小后增大

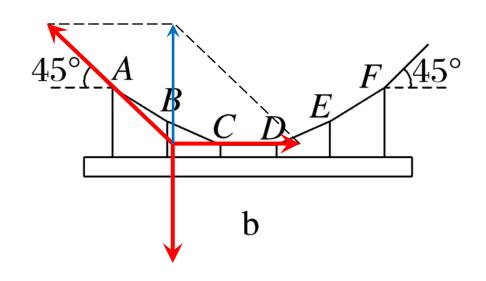




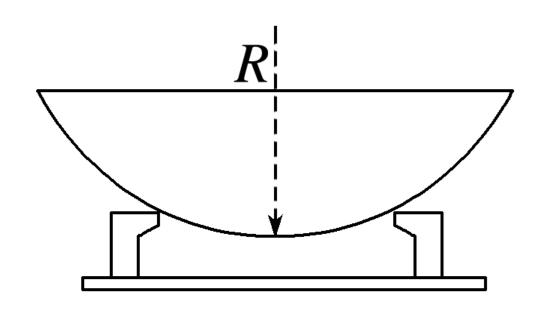

【例7】质量为M的木楔倾角为 θ ,在水平面上保持静止,当将一质量为m的木块放在木楔斜面上时,它正好匀速下滑。如果用与木楔斜面成 α 角的力F拉着木块匀速上升,如图所示(已知木楔在整个过程中始终静止,重力加速度为g)。


- (1)当 α 变化时,求拉力F的最小值;
- (2)F取最小值时, 求木楔对水平面的摩擦力是多少.

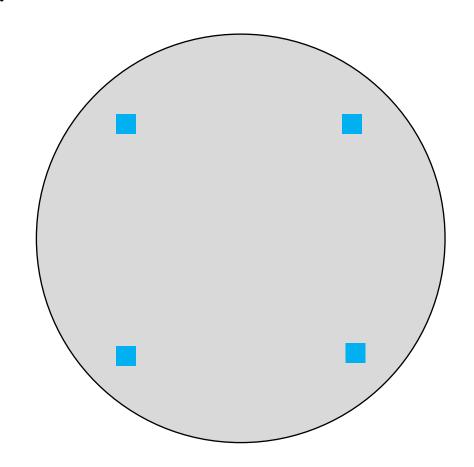
【例7】

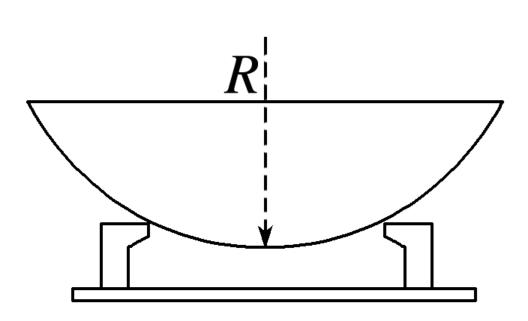


1.(2023·江苏苏州市期末)图a是一种大跨度悬索桥梁,图b为悬索桥模型,六对轻质吊索悬挂着质量为*M*的水平桥面,吊索在桥面两侧竖直对称排列,其上端挂在两根轻质悬索上(图b中只画出了其中一侧的分布情况),悬索两端与水平方向成45°角,则一根悬索水平段*CD*上的张力大小是(重力加速度为g)

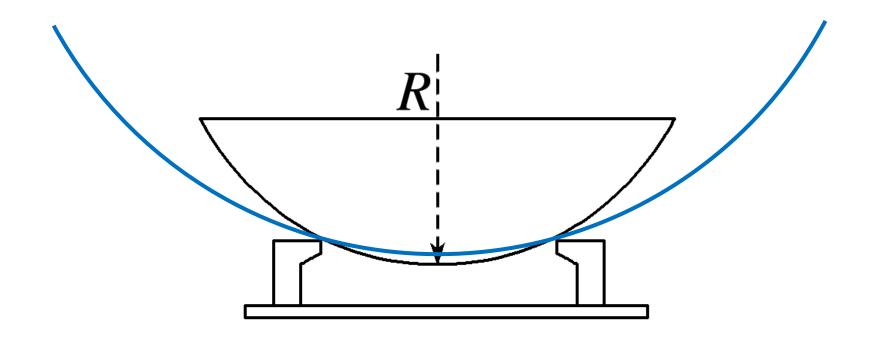


a

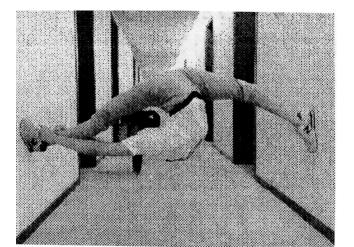

 $2.(2023 \cdot \text{江苏三模测试补偿训练})$ 家用燃气炉架有互相对称的四个爪,若将总质量为m的锅放在这个炉架上,如图所示,忽略爪与锅之间的摩擦力,重力加速度为g,设锅为半径为R的球面,则每个爪与锅之间的弹力(

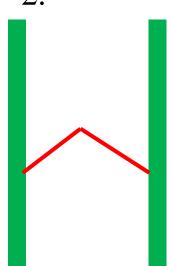

A.等于
$$\frac{1}{4}mg$$

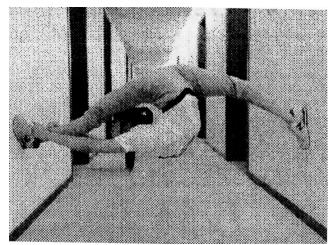
- B.等于mg
- C.R越大, 弹力越大
- D.R越大, 弹力越小

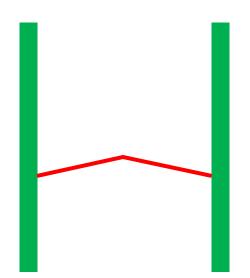


2.

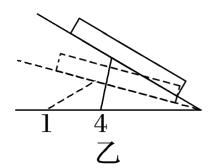

2.


 $1.(2023 \cdot \text{江苏卷·7})$ 如图所示,"嫦娥五号"探测器静止在月球平坦表面处.已知探测器质量为m,四条腿与竖直方向的夹角均为 θ ,月球表面的重力加速度为地球表面重力加速度g的 .每条腿对月球表面压力的大小为

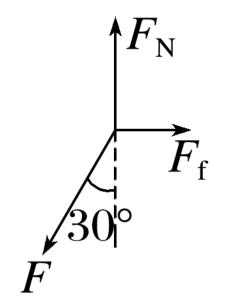

- 2.(2023·江苏连云港市模拟)如图所示,某同学展示"旋转一字马",用双脚撑在平行竖直墙壁间保持静止.关于该同学的受力,下列说法正确的是
 - A.该同学单脚受到的摩擦力等于重力
 - B.该同学单脚受到墙壁的作用力沿水平方向
 - C.若墙壁间距离稍远一些,则该同学腿部承受力增大
 - D.若墙壁间距离稍近一些,则墙壁对该同学的作用力减小

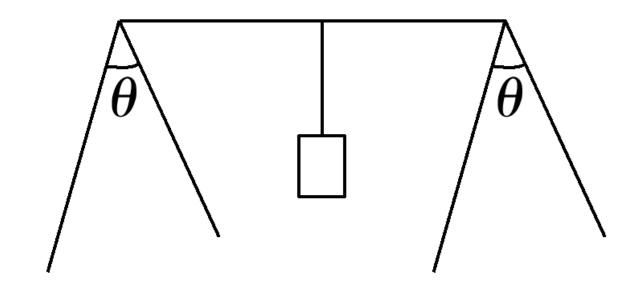


2.

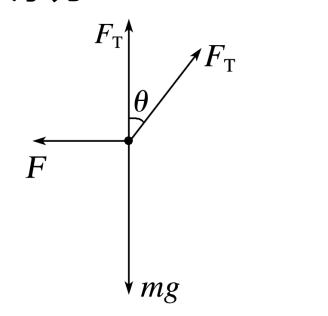


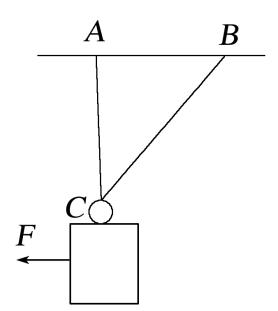
- 3.(2023·江苏南京市二模)如图甲所示,笔记本电脑支架一般有多个卡位用来调节角度,某人将电脑放在该支架上,由卡位4缓慢调至卡位1(如图乙),电脑与支架始终处于相对静止状态,则
 - A.电脑受到的支持力变大
 - B.电脑受到的摩擦力变大
 - C.支架对电脑的作用力减小
 - D.电脑受到的支持力与摩擦力两力大小之和等于其重力大小

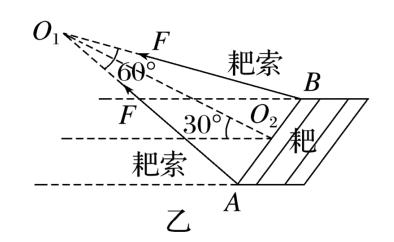


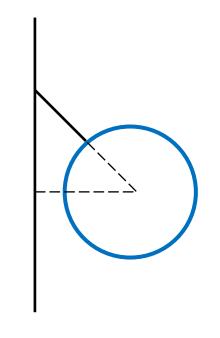


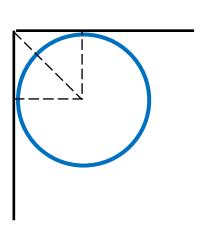
4.(2023·江苏省南京外国语学校期末改编)如图所示,一水平光滑晾衣杆上晾晒有一双手套.两只手套由一细线连接,某同学在晾衣杆两侧细线间放置一水平轻杆,已知两只手套质量相等,轻杆长度不变且始终水平,轻杆粗细不计,则下列说法正确的是

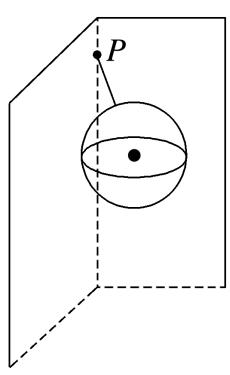

- A.将轻杆向下移动,晾衣杆两侧细线的拉力变大
- B.当图中 θ = 120°时,晾衣杆对细线的作用力最小
- C.将轻杆向上移动,晾衣杆对细线的作用力变小
- D.无论图中 θ 取何值,晾衣杆对细线的作用力都等于两手套的重力


 $5.(2022 \cdot 浙江6月选考 \cdot 10)$ 如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角 $\theta = 60^{\circ}$. 一重为G的物体悬挂在横杆中点,则每根斜杆受到地面的

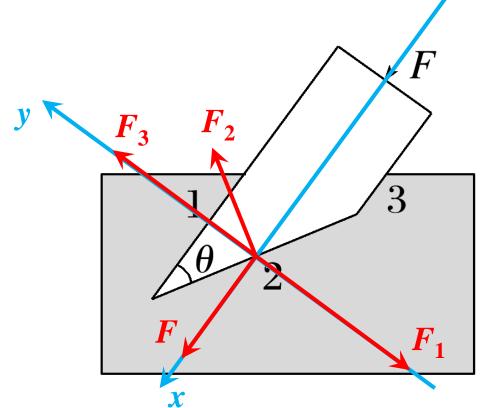

6.如图所示,细线穿过固定在重物上的光滑小环C后,两端分别固定在天花板上的A、B两点,重物(包括小环)的质量为m,对重物施加一个水平向左的拉力F,使AC段细线竖直且重物静止,已知A、B间距离为L,细线长为3L,重力加速度为g,则F的大小为




7.耙在中国已有1 500年以上的历史,北魏贾思勰著《齐民要术》称之为"铁齿榛",将使用此农具的作业称作耙地.如图甲所示,牛通过两根耙索拉耙沿水平方向匀速耙地.两根耙索等长且对称,延长线的交点为 O_1 ,夹角 $\angle AO_1B=60^\circ$,拉力大小均为F,平面 AO_1B 与水平面的夹角为 $30^\circ(O_2$ 为AB的中点),如图乙所示.忽略耙索质量,下列说法正确的是

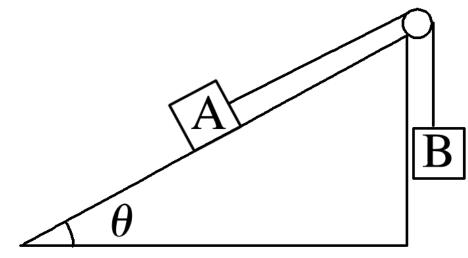


8.(2023·江苏南京市考前训练)质量为M、半径为R的光滑匀质球,用一根长度也为R的细线悬挂在互相垂直的两竖直墙壁交线处的P点,则球对任一墙壁的压力大小为(重力加速度为g)

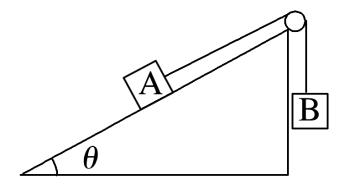

9.凿子是中国传统的木工工具,一凿子两侧面与中心轴线平行,尖端夹角为 θ ,当凿子插入木板中后,若用锤子沿中心轴线方向以适当的力F敲打凿子上侧时,凿子仍静止,侧视图如图,此时凿子作用于木板1面、2面、3面的弹力大小分别为 F_1 、 F_2 、 F_3 ,忽略凿子重力和摩擦力,下列关系式中正确的是

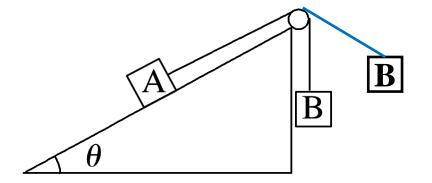
$$A.F_1 < F_3$$

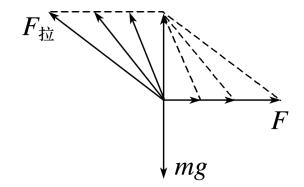
$$B.F_1 = F\cos\theta$$


$$C.F = F_2 \sin \theta$$

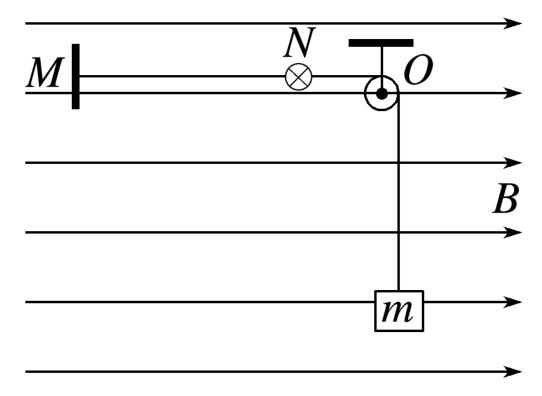
$$D.F =$$

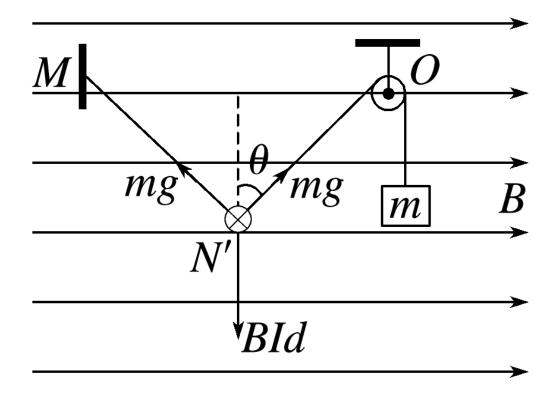



 $10.(2023 \cdot \text{江苏省学业水平考试押题卷})$ 如图所示,倾角为 $\theta = 30^\circ$ 、静置在水平地面上的斜面体顶端有一光滑的定滑轮,斜面上的物块A通过细线绕过定滑轮与物块B相连,此时物块A恰要沿斜面滑动,现在物块B上施加水平向右的力使物块B缓慢升高(图中未画出),当物块B与滑轮间的细线与竖直方向的夹角 $\varphi = 60^\circ$ 时,物块A也恰要沿斜面滑动,已知物块B的质量为m,重力加速度为g,整个过程斜面体始终静止,则


- A.外力F的最大值为2mg
- B.物块A的质量为2m
- C.物块A和斜面间的最大静摩擦力为 mg
- D.地面和斜面体间的摩擦力一直减小

10.

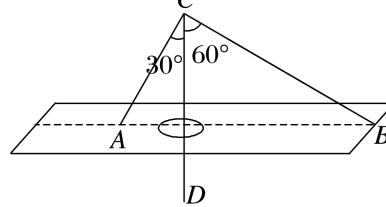


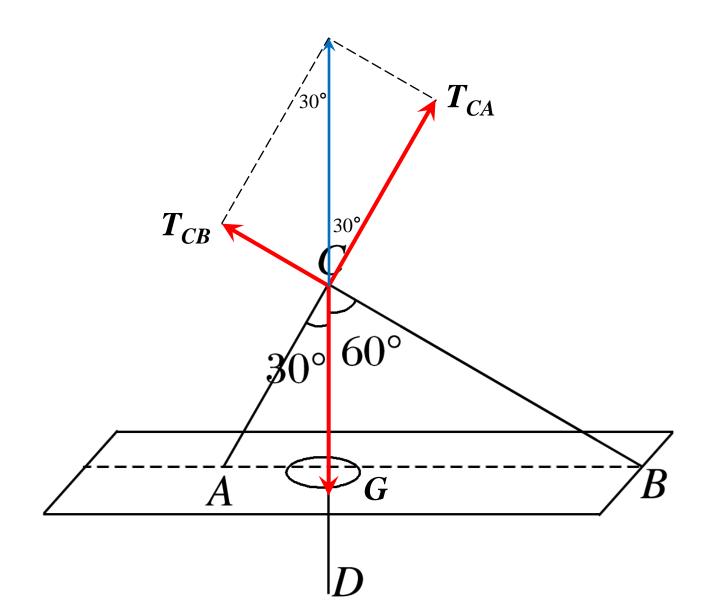

11.如图所示,空间有水平向右的匀强磁场,磁感应强度为B. 一不可伸长的绝缘、柔软细线左端固定于M点,N点拴着一长度为d的垂直纸面的轻质直导线,右端跨过O处的光滑定滑轮后悬挂一质量为m的重物,系统处于静止状态. 此时M、N、O处于同一水平线上,且MN = 2NO = 2L. 当导线中通有垂直纸面向里的恒定电流时,重物m上升L高度,系统恰好再次达到平衡,已知

重力加速度为g,则导线中通入的电流大小为

M \otimes O B

11.




12.(2023·江苏盐城市高级实验中学三模)用如图模型研究斜拉桥的平衡:细杆CD固定在地面,从质量为m的均匀平板正中央空洞内穿过.通过两根轻质细绳CA、CB将平板水平悬挂,与竖直方向夹角分别为30°、60°.ACBD在同一竖直平面内,重力加速度为g.则下列说法正确的是

- A.CB绳上的拉力大小为2mg
- B.CA绳上的拉力大小为 mg
- C.保持平板水平,绳CA不动,逐渐缩短绳CB,使B在平板上左移,这一过程CB绳上的拉力变大
- D.保持平板水平,绳CB不动,逐渐伸长绳CA,使A点在平板上左移,这一过程中CA绳上的

拉力变小

12.

